Diazaoxatriangulenium: synthesis of reactive derivatives and conjugation to bovine serum albumin.
نویسندگان
چکیده
The azaoxa-triangulenium dyes are characterised by emission in the red and a long fluorescence lifetime (up to 25 ns). These properties have been widely explored for the azadioxatrianguelnium (ADOTA) dye. Here, the syntheses of reactive maleimide and NHS-ester forms of the diazaoxatriangulenium (DAOTA) system are reported. The DAOTA fluorophore was conjugated to bovine serum albumin (BSA) and investigated in comparison to the corresponding ADOTA-BSA conjugate. It was found that the fluorescence of DAOTA experienced a significantly higher degree of solvent quenching if compared to ADOTA as non-conjugated dyes in aqueous solution, while the fluorescence quenching observed upon conjugation to BSA was significantly reduced for DAOTA when compared to ADOTA. The differences in observed quenching for the conjugates can be explained by the different electronic structures of the dyes, which renders DAOTA significantly less prone to reductive photoinduced electron transfer (PET) quenching from e.g. tryptophan. We conclude that DAOTA, with emission in the red and inherent resistance to PET quenching, is an ideal platform for the development of long fluorescence lifetime probes for time-resolved imaging and fluorescence polarisation assay.
منابع مشابه
Polyclonal antibody production against bovine serum albumin conjugated artemisinin in rabbit
Abstract: The aim of the present study was to produce a polyclonal antibody against bovine serum albumin (BSA) conjugated with artemisinin. To gain an immunogenic character of artemisinin, a carboxyl group was added to it using mixed anhydride method. Then, the reactive compound of artemisinin was conjugated with BSA. The BSA+artemisinin were injected to white female New Zealand rabbits for two...
متن کاملTargeted Delivery of 5-fluorouracil with Monoclonal Antibody Modified Bovine Serum Albumin Nanoparticles
Herein, 1F2, an anti-HER2 monoclonal antibody (mAb), was covalently coupled to the surface of 5-Fluorouracil (5-FU) loaded bovine serum albumin (BSA) nanoparticles. Concerning two different crosslinkers for conjugation of 1F2, Maleimide-poly (ethylene glycol)-Succinimidyl carbonate (Mal-PEG5000-NHS) was selected due to its higher conjugation efficiency (23±4 %) obtained in comparison to N-succi...
متن کاملTargeted Delivery of 5-fluorouracil with Monoclonal Antibody Modified Bovine Serum Albumin Nanoparticles
Herein, 1F2, an anti-HER2 monoclonal antibody (mAb), was covalently coupled to the surface of 5-Fluorouracil (5-FU) loaded bovine serum albumin (BSA) nanoparticles. Concerning two different crosslinkers for conjugation of 1F2, Maleimide-poly (ethylene glycol)-Succinimidyl carbonate (Mal-PEG5000-NHS) was selected due to its higher conjugation efficiency (23±4 %) obtained in comparison to N-succi...
متن کاملCoating of Iron Oxide Nanoparticles with Human and Bovine Serum Albumins: A Thermodynamic Approach
In this research, the Magnetite nanoparticles (Fe304) were prepared by coprecipitation of Fe3+ andFE solution in alkaline medium. Two kinds of surfactants, cetyl tri methyl ammonium bromide(CTAB) and cetyl pyridinum chloride (CPC) were used in the synthesis. Fe304 Nanoparticles werecoated with human serum albumin (HSA) and bovine serum albumin (BSA). Characteristics ofcoated magnetic nanopartic...
متن کاملSynthesis of Three Rimantadine Schiff Bases and Their Biological Effects on Serum Albumin
Three new rimantadine Schiff bases (RSBs) were prepared, and then the interaction of RSBs with bovine serum albumin (BSA) was investigated using fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy under physiological conditions. The results showed that the three RSBs effectively quenched the intrinsic fluorescence of BSA via static quenching. Binding constant (Ka), number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2016